NOTE

Mechanistic Studies of $CH₄/O₂$ Conversion over SiO₂-Supported Nickel and Copper Catalysts

 CH_4/O_2 (2/1) with reduced and unreduced SiO₂-supported facilitate methane reforming via CO₂ and H₂O. Lunsford copper and nickel (10 wt% metal) catalysts in a pulse mi- and co-workers (14) proved the existence of a large thermal croreactor at 600, 650, and 700 $^{\circ}$ C. gradients (as much as 300 $^{\circ}$ C) or hot spots within the catalyst

past few years. Besides the methane oxidative coupling using an optical pyrometer and pointed out the temperaprocess, the partial oxidation of methane to syngas is an- ture reported by Choudhary *et al.* was in fact much less other route being considered. The reaction is mildly exo- than the true temperature of the catalyst. thermic and the catalysts employed are mainly supported In order to avoid the augmentation of catalyst bed tem-Group VIII metals such as Ni, Rh, Ru, Pd, Pt, and Co perature, a pulse technique was used to probe the mecha- (1–8). Usually, a H₂/CO ratio of about 2, suitable for meth- nistic aspects of the conversion of CH₄/O₂ to syngas (15). anol and Fischer–Tropsch syntheses, is obtained. Until Previously, we reported the pulse studies of CH_4 and CH_4 / now, a unified viewpoint on the mechanism of this catalytic O_2 over unreduced NiO/Al₂O₃ catalysts at 500°C and process has not been reached. Many researchers $(1, 2, 7-9)$ pointed out that the adsorption of CH₄ on reduced nickel believed that two stages are involved in the process: (i) is a key step for the formation of syngas. In the present complete oxidation of methane to CO_2 and H_2O and (ii) studies, the reaction behaviors of CH_4 and CH_4/O_2 with reforming of the remaining methane by H_2O and/or CO_2 SiO₂-supported copper and nickel catalysts were compared formed in the first stage. Furthermore, Lunsford and co- in view of the fact that the former catalyst demonstrates workers (2) proposed that the initial complete oxidation an ability of causing methane complete oxidation while reaction occurs on the unreduced NiO/Al_2O_3 catalyst and the latter is known to be active in syngas formation. The the reforming reactions happen on the reduced $Ni/Al₂O₃$ contrast of the two will provide insights into the mechacatalyst. Schmidt and co-workers $(4, 5, 10)$ have shown nisms of the CH₄/O₂-to-syngas reaction. To avoid gasthat syngas (H_2 : CO very close to 2:1) can be produced phase reforming reactions, the highest reaction temperaat ca. 1100°C with high H₂ and CO selectivities ($>90\%$) ture was kept to 700°C. and high CH₄ conversion ($>80\%$) over Pt- or Rh-coated The SiO₂-supported copper and nickel catalysts (with 10 alumina monoliths by direct catalytic oxidation of methane wt% metal) were prepared by impregnating SiO₂ with oxygen. The reaction was conducted at residence (Aldrich, 60-80 mesh) with the corresponding nitrate times between 10^{-2} and 10^{-4} s, noticeably shorter than the (BDH, A.R. grade) solution followed by drying at 100° C time of ca. 1 s (4, 11) usually adopted in a steam reforming for 12 h and annealing at 500° C for 2 h for decomposition. reactor. With such short superficial contact time, they con- The catalysts so prepared are the unreduced ones and are sidered that the direct oxidation reaction should be inde- signified as $NiO/SiO₂$ and $CuO/SiO₂$. The catalysts treated pendent of the reforming reactions and concluded that the in H_2 for one hour at 500°C are the reduced ones and are primary surface reaction is methane pyrolysis followed by expressed as $Ni/SiO₂$ and Cu/SiO₂. surface carbon oxidation and H_2 desorption. Choudhary The reaction was carried out in a pulse microreactor *et al.* (12, 13) reported that high selectivity to CO and H₂ (15). The reactor was made of quartz tube with 4 mm i.d. could be achieved at temperature lower than $700^{\circ}C$ (in A chromel–alumel thermocouple was introduced from the some cases, as low as $300-400^{\circ}$ C) on a variety of Ni- and top of the reactor and placed in the middle of the catalyst Co-containing catalysts with high reactant gas space veloci- bed to measure the reaction temperature. For each study, ties $(10^5 - 10^6 \text{ h}^{-1})$ directly from methane oxidation. However, Matsumura and CH_4/O_2 (2/1) were 1.11, 0.44, and 1.03 ml, respectively. and Moffat (8) pointed out that the amount of reactants The reactants and products were analyzed on-line by a

In this note, we report the reaction behaviors of CH_4 and the heat generated during the exothermic reaction would Methane utilization has received much attention in the bed in the oxidation of methane at high space velocities

wt% metal) were prepared by impregnating $SiO₂$ granule

50 mg of catalyst was used. The pulse volumes of CH_4 , O_2 fed in Schmidt's and Choudhary's studies was so large that Shimadzu GC-8A gas chromatograph equipped with TCD

FIG. 1. The relationship of CH₄ conversion to the ordinal number of CH₄ pulsing over Ni/SiO₂ (solid symbols) and Cu/SiO₂ (hollow symbols) at 600 \degree C (\degree), 650 \degree C (\Box), and 700 \degree C (\triangle).

 $(MSSA$ and Porapak Q as columns, 50° C; helium as carrier gas). Selectivities (mol%) were calculated on the basis of carbon contents in the products. In the $CH₄/O₂$ experiments, the results of carbon balance are estimated to be within 5% accuracy. In the absence of the catalysts, the blank runs showed almost no activity in the reaction conditions mentioned in this paper.

Methane (99.9%), oxygen (99.7%), hydrogen (99.995%), and helium (99.995%) from Hong Kong Oxygen Company were used directly without further purification.

As shown in Fig. 1, no methane conversion was detected when methane was pulsed over $Cu/SiO₂$. This is a definite indication that metallic copper is ineffective in dissociating methane. Over $Ni/SiO₂$, however, methane dissociated, and a large amount of H_2 and a trace amount of CO were detected. Initial CH₄ conversion was ca. 55% at 700 $^{\circ}$ C. It started to decline rapidly after the 8th pulse and stayed at around 15% after the 15th pulse. At 650° C, the CH₄ conversion was initially about 45% and declined gradually after the 8th pulse and reached ca. 15% at the 19th pulse. At 600° C, the CH₄ conversion stayed at around 35% within the first 20 pulses. Other than H_2 and CO, no C_2 hydrocarbons were observed as gaseous products.

CO and $CO₂$ were formed when $O₂$ was pulsed in instead after the 20th pulse of CH_4 over Ni/SiO_2 , indicating that there were carbon species deposited on the catalyst. Reduction treatment after the complete removal of the accumulated carbon by oxidation could restore the catalyst to its original activity for methane decomposition. So the occupancy of the active sites by carbon species should be the reason for the decline in methane dissociation activity.

Maybe, the missing of C_2 hydrocarbons as gaseous products

is a hint for the complete decomposition of methane to

with the ordinal number of O_2 nulsing give C(s) and H(s). The combination of two H(s) would CH₄ shown in Fig. 1 at 600°C (O), 650°C (\Box), and 700°C (\triangle).

generate $H_2(g)$ and the oxidation of C(s) by pulses of oxygen would generate CO and $CO₂$. Based on the amount of CO and $CO₂$ generated and the volume of each oxygen pulse, we obtained the molar ratio of surface carbon to oxygen at each reaction point. As shown in Fig. 2, the molar ratio of surface carbon to oxygen decreased with the ordinal number of oxygen pulse. At each temperature, at the reaction points where the surface carbon to oxygen ratio was above 1, the selectivities of CO and $CO₂$ were fairly stable $(<5\%$ of fluctuation), and the selectivity of CO increased with increasing temperature. When the mo-

 (a)

with the ordinal number of O_2 pulsing over Ni/SiO₂ after the pulsing of

FIG. 3. (a) The relationship of CH₄ conversion to the ordinal number of CH₄ pulsing over NiO/SiO₂ (solid symbols) and CuO/SiO₂ (hollow symbols) at 600°C ($\circlearrowright)$, 650°C (\Box), and 700°C (\triangle). (b) The relationship of $CO₂(\diamond)$, CO (\square), and $C(s)$ (*) selectivities to the ordinal number of CH₄ pulsing over NiO/SiO₂ at 650 \degree C.

lar ratio of surface carbon to oxygen decreased to 0.3, 0.6, The products of $CH_4/O_2(2/1)$ interaction with CuO/SiO₂

of CuO are active sites for methane complete oxidation. Such saying is compatible with the result of Efstathiou *et* $al.$ (16), who, after following the reaction of $CH₄/He$ with the 2 wt% Li_2O/TiO_2 catalyst used for the oxidation coupling of methane (OCM), pointed out that lattice oxygen of $TiO₂$ are sites for methane complete oxidation.

Over $NiO/SiO₂$, regardless of the reaction temperature, methane conversion at the first $CH₄$ pulse was higher than the following pulses. The gaseous products were H_2 , H_2O , $CO₂$, and CO. The accumulation of carbon on the surface was verified by the detection of CO and $CO₂$ when $O₂$ was pulsed over the catalyst after the pulsing of $CH₄$, and its amount at each reaction point of methane pulse was obtained based on 100% carbon balance. The changing profiles of the selectivities of $CO₂$, CO, and C(s) as related to the ordinal number of CH_4 pulsing were similar at the temperatures studied and only the profile at 650° C is shown in Fig. 3b. At the first pulse of methane, the selectivities of $CO₂$, $C(s)$, and CO were respectively ca. 73, 25, and 2%. Hence initially, the interaction of CH_4 with NiO/SiO_2 involved mainly the complete oxidation of methane (and hence the reduction of Ni^{2+} to Ni^{0}) to give prevailingly $CO₂$. Based on the initial weight of the catalyst and the amount of CH_4 consumed as well as the amount of CO_2 and CO formed in the first two reaction points of methane pulses, it can be estimated that all the NiO initially present has been reduced to Ni⁰. From the 3rd pulse onward, the main reaction was methane decomposition on the reduced nickel sites and the methane converted ended up mainly as C(s) (ca. 97% selectivity).

The reaction for the direct interaction of methane with lattice oxygen over $CuO/SiO₂$ and $NiO/SiO₂$ can be represented as

$$
CH4(g) + 4M2+ + 4[O2-] \rightarrow
$$

CO₂(g) + 2H₂O(g) + 4M⁰ + 4[*], [1]

where M denotes Ni or Cu and $[*]$ denotes the oxygen anion vacancy.

and 0.8 respectively at 600, 650, and 700°C, the correspond- and NiO/SiO₂ at 600, 650 and 700°C were exclusively $CO₂$ ing CO selectivity at each temperature decreased by only and H_2O . As shown in Fig. 4, over both CuO/SiO₂ and ca. 10% in value. The results indicated that with molar ratio $NiO/SiO₂$, at each reaction temperature, the conversion of surface carbon to oxygen >1 , the product distribution in of O₂ was approximately four times that of CH₄, indicating the oxidation of surface carbon is subject to the change of the overall reaction proceeds according to CH₄ + 2O₂ \rightarrow reaction temperature. CO₂ + 2H₂O. From Fig. 4a, one can see that at equal Figure 3a shows that CH₄ did not interact with CuO/ temperature, methane conversion over NiO/SiO₂ was $SiO₂$ at 600°C. At 650 and 700°C, only a small amount of higher than that over CuO/SiO₂, implying that lattice oxymethane was converted to CO_2 and H_2O . Since there was gen of NiO is more reactive. With the rise in reaction no oxygen in the reactant feed and the reaction of CH4 temperature, the amount of methane converted increased occurred on the support alone was negligible, the genera- distinctively over $CuO/SiO₂$, whereas over NiO/SiO₂, tion of CO_2 and H_2O must be the result of CH_4 interaction methane conversion remained roughly at 28%. Figure 4b with lattice oxygen of CuO. In other words, lattice oxygen shows that the trend of oxygen conversion over $CuO/SiO₂$

with the rise in reaction temperature. Therefore, a parallel is a key step for syngas formation. relationship can be drawn between the conversions of In the reaction of CH_4/O_2 over Ni/SiO₂, CO selectivity methane and oxygen over the two catalysts. increased with increasing reaction temperature (Fig. 5c).

observed during the interaction of CH_4/O_2 with the two oxygen conversion at each reaction point, the molar ratio unreduced catalysts, it can be concluded that steam and of surface carbon to oxygen was estimated to be ca. 1.1, CO_2 reforming reactions had not taken place. Also, the 1.2, and 1.4 respectively at 600, 650, and 700 $^{\circ}$ C in the parallel relation between the conversions of methane and reaction of CH_4/O_2 over Ni/SiO_2 . As shown in Fig. 2, CO oxygen indicates that proportional amount of gaseous oxy- selectivity increased with increasing temperature in the gen was used to replenish the lattice oxygen consumed oxidation reaction of surface carbon deposited on the Ni/ during the complete oxidation of methane. It can be in- $SiO₂$ catalyst when the molar ratio of surface carbon to ferred that under the conditions adopted in our studies, oxygen was above one. The similar trend between CO

the interaction of $CH₄/O₂$ with CuO/SiO₂ and NiO/SiO₂ follows something like the redox or/and push–pull mechanism suggested for CO oxidation (17):

1. Direct interaction between methane and surface lattice oxygen to give $CO₂$, H₂O with the catalysts partially reduced according to reaction [1].

2. Reaction of gaseous oxygen with $Cu⁰$ and Ni⁰ to regenerate Cu^{2+} and Ni^{2+} , restoring the catalysts to their original states:

$$
2M^0 + 2[*] + O_2(g) \to 2M^{2+} + 2[O^{2-}].
$$
 [2]

Under similar conditions, methane conversion over Ni/ $SiO₂$ was significantly higher than that over Cu/SiO₂ (Fig. 5a). An increase in reaction temperature would result in the increase in CH₄ conversion over both reduced catalysts. Independent of temperature rise, oxygen conversion over $Ni/SiO₂$ remained constantly at 100%. Over Cu/SiO₂, it dropped from 100% at the first pulse to 37, 51, and 73% at the 8th pulse at 600, 650, and 700° C respectively (Fig. 5b).

Similar to the reaction of CH_4/O_2 over CuO/SiO_2 , the gaseous products over $Cu/SiO₂$ were exclusively $CO₂$ and H2O. A comparison between Figs. 4a,4b and 5a,5b reveals that except for the first four pulses of $CH₄/O₂$, the amount of methane and oxygen converted over $Cu/SiO₂$ and $CuO/$ $SiO₂$ was very similar. It can be deduced that during the first four pulses of CH_4/O_2 over Cu/SiO_2 , gaseous oxygen was consumed in the oxidation of $Cu/SiO₂$ to $CuO/SiO₂$ (hence higher in conversion). After the 4th pulse, the reaction over $Cu/SiO₂$ became one over $CuO/SiO₂$. This is verified by the fact that $CO₂$ and $H₂O$ were formed when $CH₄$ was pulsed over $Cu/SiO₂$ after the eighth pulse of CH_4/O_2 . However, over Ni/SiO₂, the main products were CO, H_2 (selectivities $>60\%$) with CO₂ and H₂O being the minor ones (Fig. 5c). In comparison, the reaction of $CH₄/$ **FIG. 4.** The relationships of (a) CH₄ and (b) O₂ conversions to the O_2 over Cu/SiO₂, which is inactive for methane dissociaordinal number of CH₄/O₂ pulsing over NiO/SiO₂ (solid symbols) and tion and is easily oxidized to CuO/SiO₂ in the presence of CuO/SiO₂ (hollow symbols) at 600°C (\odot), 650°C (\Box), and 700°C (\triangle). On led on O_2 , led only to CO_2 and H_2O formation, while the reaction of CH_4/O_2 over Ni/SiO_2 , on which methane adsorbs dissociatively, resulted in the formation of CO and $H₂$ as main and $NiO/SiO₂$ is very similar to that of methane conversion products. The result indicated that methane dissociation

Since other than CO_2 and H_2O , CO and H_2 were not Based on the amount of methane converted and 100% of

FIG. 5. The relationship of (a) CH₄ and (b) O_2 conversions, as well as (c) CO selectivity and (d) CO₂ yield, to the ordinal number of CH₄/O₂ pulsing over Ni/SiO₂ (solid symbols) and Cu/SiO₂ (hollow symbols) at 600°C (\circ), 650°C (\Box), and 700°C (\triangle).

Over Ni/SiO₂, the yield of $CO₂$ decreased with increas- SiO₂ catalyst. ing temperature. Such trend became reversed over Cu/ Over Ni/SiO₂, oxygen and methane adsorbed competi- $SiO₂$ (Fig. 5d). The result indicates the formation of $CO₂$ tively on metallic nickel. Though a small amount of metallic over Ni/SiO₂ followed a mechanism other than that over nickel might be oxidized to Ni²⁺ in the presence of oxygen, $Cu/SiO₂$. In other words, reaction [1] was not the main the oxidized nickel can be rereduced via reaction [1]. Thus pathway for CO_2 formation over Ni/SiO₂. Further oxida- a certain amount of Ni⁰ sites can be sustained to keep the

selectivity and reaction temperature observed in the reac- tion of carbon monoxide is probably the main pathway for tion of CH_4/O_2 and in the oxidation reaction of surface CO_2 formation and the selectivity of CO is mainly govcarbon over $Ni/SiO₂$ implied that the primary surface reac- erned by the two competitive steps, namely, the oxidation tion of CH_4/O_2 over Ni/SiO₂ was methane pyrolysis, of CO(s) to give CO₂ and the desorption of CO(s) to $CH₄(s) \rightarrow C(s) + 4H(s)$, followed by oxidation of C(s) to CO(g). As calculated using the Bond Order Conservation– CO and combination of $H(s)$ to H_2 . Similarly, as Lunsford Morse Potential approach (18), over Ni(111) surface, the and co-workers (2) have reported, temporary stoppage of oxidation of CO(s) to give $CO₂(s)$ has an activation energy the CH₄ flow during the reaction of oxygen-deficient CH₄/ of 64kJ/mol, while the value for CO(s) desorption is 113 O_2 mixture over a 25 wt% Ni/Al₂O₃ catalyst, resulted in kJ/mol. Since the activation energy of CO(s) desorption reaction of the previously deposited surface carbon with is nearly double that of $CO(s)$ oxidation, the augmentation the continuing oxygen feed, producing a $CO/CO₂$ mixture of reaction temperature would favor $CO(s)$ desorption whose composition conformed to the thermodynamic equi- more than CO(s) oxidation, leading to the increase in seleclibrium ratio at the reaction temperature employed. tivity of CO. This is what we have observed over the Ni/

is an activation process and the adsorption rate is acceler-
ated exponentially by temperature raising, whereas the $\frac{J. H., J. \text{ Catal. } 132, 117 (1991)}{96, 8686 (1992)}$. surface coverage of O(s) adatoms decreases with rising 4. Hickman, D. A., and Schmidt, L. D., *J. Catal.* **138,** 267 (1992). temperature. Thus, one can expect the higher the tempera- 5. Hickman, D. A., Haupfear, E. A., and Schmidt, L. D., *Catal. Lett.* ture is, the higher the ratio of Ni^0/Ni^{2+} will be. The coexis- 17, 223 (1993). tence of Ni^0 and Ni^{2+} sites on nickel catalysts for syngas $\begin{array}{c} 6. \text{ Poirier, M. G., Trudel, J., and Guay, D., \text{ } Catal. \text{ } Let. 21, 99 (1993). \end{array}$
formation from CH₄/SiO₂ had been confirmed by XPS and $\begin{array}{c} 6. \text{ Poirier, M. G., Trudel, J., and Guay$

In summary, we have avoided the ''hot spot'' problem **43,** 335 (1946). by employing the pulse method in the mechanistic studies 10. Hickman, D. A., and Schmidt, L. D., *Science* **259,** 343 (1993). of methane partial oxidation to syngas. Under the experi-
mental conditions adopted, reactions due to gas-phase
steam and CO₂ reforming were negligible.
The steam of CO₂ reforming were negligible.
13 Choudhary V, R. R

Methane does not interact with $Cu/SiO₂$ but adsorbs 269 (1992).
ssociatively on Ni/SiO₂ to give H₂ and surface carbon 14. Dissanayake, D., Rosynek, M. P., and Lunsford, J. H., J. Phys. Chem. dissociatively on $Ni/SiO₂$ to give H₂ and surface carbon. ^{14.} Dissanayake, D.
Mathana interaction with CuO/SiO , produces CO and **97**, 3644 (1993). Methane interaction with CuO/SiO₂ produces CO₂ and $\frac{97,3644 (1993)}{15}$. Au, C. T., Hu, Y. H., and Wan, H. L., Catal. Lett. 27, 199 (1994). H_2O , whereas over NiO/SiO₂ the products are CO_2 , H_2O , H_3O , H_4O , H_5H_6 , H_7H_7 , H_8 , H_9H_8 , H_9H_9 , H_9 H_2 , surface carbon, and a small amount of CO. The interac- $41,612$ (1993). tions of CH_4/O_2 with CuO/SiO_2 , NiO/SiO_2 , and Cu/SiO_2 17. Bielanski, A., and Haber, J., "Oxygen in Catalysis," p. 138. Dekker, generate exclusively CO_2 and H_2O Only in the reaction New York, 1991. generate exclusively CO_2 and H_2O . Only in the reaction New York, 1991.
of CH_4/O_2 over Ni/SiO₂, on which methane adsorbs dissoc- ^{18.} Shustorovich, E., *Adv. Catal.* **37,** 101 (1991). iatively, would CO and H_2 be formed as main products. $C_T A u^{*1}$ We conclude that lattice oxygen are sites responsible for methane complete oxidation. Methane dissociation over H. L. Wan†
metallic nickel is a key step for CO and H₂ formation. In order words, the conversion of CH_4/O_2 to syngas over
nickel catalysts at temperatures below 700°C follows the
 224 Waterloo Road pyrolysis mechanism. *Kowloon, Hong Kong*

The project was supported by the Hong Kong Research Grants Coun- *Xiamen 361005 People's Republic of China* cil, UGC.

1. Vernon, P. D. F., Green, M. L., Cheetham, A. K., and Ascroft, A. T., *Catal. Lett.* **6,** 181 (1990). 1 To whom correspondence should be addressed.

- formation of CO and H_2 going. Methane adsorption on Ni 2. Dissanayake, D., Rosynek, M. P., Kharas, K. C. C., and Lunsford, is an activation process and the adsorption rate is acceler J. H., J. Catal. 132, 117 (1991).
	-
	-
	-
	-
	-
	-
	- 9. Prettre, M., Eichner, C., and Perrin, M., *J. Chem. Soc. Faraday Trans.*
	-
	-
	-
	- 13. Choudhary, V. R., Rajput, A. M., and Rane, V. H., *Catal. Lett.* **16,**
	-
	-
	-
	-
	-

H. Y. Wang*₁

† *The State Key Laboratory for* **ACKNOWLEDGMENT** *Physical Chemistry of the Solid Surface Xiamen University*

REFERENCES Received December 27, 1994; revised September 12, 1995; accepted September 18, 1995